start moving rstar tree code into lib
This commit is contained in:
parent
16706c8338
commit
228c6ff976
5 changed files with 940 additions and 18 deletions
13
Cargo.lock
generated
13
Cargo.lock
generated
|
|
@ -330,7 +330,7 @@ dependencies = [
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "autobats"
|
name = "autobarts"
|
||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"bevy",
|
"bevy",
|
||||||
|
|
@ -339,7 +339,6 @@ dependencies = [
|
||||||
"ordered-float",
|
"ordered-float",
|
||||||
"rusqlite",
|
"rusqlite",
|
||||||
"rusqlite_migration",
|
"rusqlite_migration",
|
||||||
"spart",
|
|
||||||
"steel-core",
|
"steel-core",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
@ -4795,16 +4794,6 @@ dependencies = [
|
||||||
"serde",
|
"serde",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "spart"
|
|
||||||
version = "0.5.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "7a05d85e94c16e35b2f963dee2eaa6f6b2494ee5dad740b045b139c5614872d6"
|
|
||||||
dependencies = [
|
|
||||||
"ordered-float",
|
|
||||||
"tracing",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "spin"
|
name = "spin"
|
||||||
version = "0.10.0"
|
version = "0.10.0"
|
||||||
|
|
|
||||||
|
|
@ -1,5 +1,5 @@
|
||||||
[package]
|
[package]
|
||||||
name = "autobats"
|
name = "autobarts"
|
||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
edition = "2024"
|
edition = "2024"
|
||||||
|
|
||||||
|
|
@ -10,7 +10,6 @@ include_dir = "0.7.4"
|
||||||
ordered-float = "5.1.0"
|
ordered-float = "5.1.0"
|
||||||
rusqlite = { version = "0.37", default-features = false, features = ["bundled", "blob", "functions", "jiff"] }
|
rusqlite = { version = "0.37", default-features = false, features = ["bundled", "blob", "functions", "jiff"] }
|
||||||
rusqlite_migration = { version = "2.3.0", features = ["from-directory"] }
|
rusqlite_migration = { version = "2.3.0", features = ["from-directory"] }
|
||||||
spart = "0.5.0"
|
|
||||||
steel-core = { git="https://github.com/mattwparas/steel.git", branch = "master" }
|
steel-core = { git="https://github.com/mattwparas/steel.git", branch = "master" }
|
||||||
|
|
||||||
# Enable a small amount of optimization in the dev profile.
|
# Enable a small amount of optimization in the dev profile.
|
||||||
|
|
|
||||||
5
src/lib.rs
Normal file
5
src/lib.rs
Normal file
|
|
@ -0,0 +1,5 @@
|
||||||
|
pub mod db;
|
||||||
|
pub mod geom;
|
||||||
|
mod spindex;
|
||||||
|
|
||||||
|
pub use spindex::*;
|
||||||
|
|
@ -1,8 +1,5 @@
|
||||||
|
use autobarts::db::init_db;
|
||||||
use bevy::prelude::*;
|
use bevy::prelude::*;
|
||||||
use db::init_db;
|
|
||||||
|
|
||||||
mod db;
|
|
||||||
mod geom;
|
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
App::new()
|
App::new()
|
||||||
|
|
|
||||||
932
src/spindex.rs
Normal file
932
src/spindex.rs
Normal file
|
|
@ -0,0 +1,932 @@
|
||||||
|
use crate::geom::Point;
|
||||||
|
use bevy::math::bounding::Aabb2d;
|
||||||
|
use ordered_float::OrderedFloat;
|
||||||
|
use std::cmp::Ordering;
|
||||||
|
use std::collections::BinaryHeap;
|
||||||
|
|
||||||
|
// Epsilon value for zero-sizes bounding boxes/cubes.
|
||||||
|
const EPSILON: f64 = 1e-10;
|
||||||
|
|
||||||
|
/// An entry in the R*‑tree, which can be either a leaf or a node.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
|
||||||
|
pub enum Entry {
|
||||||
|
Leaf { mbr: Aabb2d, object: Point },
|
||||||
|
Node { mbr: Aabb2d, child: TreeNode },
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Entry {
|
||||||
|
/// Returns a reference to the minimum bounding volume for this entry.
|
||||||
|
pub fn mbr(&self) -> &Aabb2d {
|
||||||
|
match self {
|
||||||
|
Entry::Leaf { mbr, .. } | Entry::Node { mbr, .. } => mbr,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A node in the R*‑tree.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct TreeNode {
|
||||||
|
/// The entries stored in this node.
|
||||||
|
pub entries: Vec<Entry>,
|
||||||
|
/// Indicates whether this node is a leaf.
|
||||||
|
pub is_leaf: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// R*‑tree data structure for indexing 2D or 3D points.
|
||||||
|
///
|
||||||
|
/// The tree is initialized with a maximum number of entries per node. If a node exceeds this
|
||||||
|
/// number, it will split. The tree supports insertion, deletion, and range searches.
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct RStarTree {
|
||||||
|
root: TreeNode,
|
||||||
|
max_entries: usize,
|
||||||
|
min_entries: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
// Common trait implementations for R*-tree to reuse shared algorithms.
|
||||||
|
impl Entry {
|
||||||
|
fn as_leaf_obj(&self) -> Option<&Point> {
|
||||||
|
match self {
|
||||||
|
Entry::Leaf { object, .. } => Some(object),
|
||||||
|
_ => None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn child(&self) -> Option<&Box> {
|
||||||
|
match self {
|
||||||
|
Entry::Node { child, .. } => Some(child),
|
||||||
|
_ => None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn child_mut(&mut self) -> Option<&mut <Self as crate::rtree_common::EntryAccess>::Node> {
|
||||||
|
match self {
|
||||||
|
Entry::Node { child, .. } => Some(child),
|
||||||
|
_ => None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn set_mbr(&mut self, new_mbr: Self::BV) {
|
||||||
|
if let Entry::Node { mbr, .. } = self {
|
||||||
|
*mbr = new_mbr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn into_child(self) -> Option<Box<<Self as crate::rtree_common::EntryAccess>::Node>>
|
||||||
|
where
|
||||||
|
Self: Sized,
|
||||||
|
{
|
||||||
|
match self {
|
||||||
|
Entry::Node { child, .. } => Some(child),
|
||||||
|
_ => None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: RStarTreeObject> crate::rtree_common::NodeAccess for TreeNode<T> {
|
||||||
|
type Entry = Entry<T>;
|
||||||
|
fn is_leaf(&self) -> bool {
|
||||||
|
self.is_leaf
|
||||||
|
}
|
||||||
|
fn entries(&self) -> &Vec<Self::Entry> {
|
||||||
|
&self.entries
|
||||||
|
}
|
||||||
|
fn entries_mut(&mut self) -> &mut Vec<Self::Entry> {
|
||||||
|
&mut self.entries
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: RStarTreeObject> RStarTree<T> {
|
||||||
|
/// Creates a new R*‑tree with the specified maximum number of entries per node.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `max_entries` - The maximum number of entries allowed in a node.
|
||||||
|
///
|
||||||
|
/// # Errors
|
||||||
|
///
|
||||||
|
/// Returns `SpartError::InvalidCapacity` if `max_entries` is less than 2.
|
||||||
|
pub fn new(max_entries: usize) -> Result<Self, SpartError> {
|
||||||
|
if max_entries < 2 {
|
||||||
|
return Err(SpartError::InvalidCapacity {
|
||||||
|
capacity: max_entries,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
info!("Creating new RStarTree with max_entries: {}", max_entries);
|
||||||
|
Ok(RStarTree {
|
||||||
|
root: TreeNode {
|
||||||
|
entries: Vec::new(),
|
||||||
|
is_leaf: true,
|
||||||
|
},
|
||||||
|
max_entries,
|
||||||
|
min_entries: (max_entries as f64 * 0.4).ceil() as usize,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Inserts an object into the R*‑tree.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `object` - The object to insert.
|
||||||
|
pub fn insert(&mut self, object: T)
|
||||||
|
where
|
||||||
|
T: Clone,
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
info!("Inserting object into RStarTree: {:?}", object);
|
||||||
|
let entry = Entry::Leaf {
|
||||||
|
mbr: object.mbr(),
|
||||||
|
object,
|
||||||
|
};
|
||||||
|
self.insert_entry(entry, None);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn insert_entry(&mut self, entry: Entry<T>, reinsert_from_level: Option<usize>)
|
||||||
|
where
|
||||||
|
T: Clone,
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
let mut to_insert = vec![(entry, 0)];
|
||||||
|
let mut reinsert_level = reinsert_from_level;
|
||||||
|
|
||||||
|
while let Some((item, level)) = to_insert.pop() {
|
||||||
|
let overflow = insert_recursive(
|
||||||
|
&mut self.root,
|
||||||
|
item,
|
||||||
|
self.max_entries,
|
||||||
|
level,
|
||||||
|
&mut reinsert_level,
|
||||||
|
&mut to_insert,
|
||||||
|
);
|
||||||
|
|
||||||
|
if let Some((overflowed_node, overflow_level)) = overflow {
|
||||||
|
if reinsert_level == Some(overflow_level) {
|
||||||
|
let old_entries = overflowed_node;
|
||||||
|
let (group1, group2) = split_entries(old_entries, self.max_entries);
|
||||||
|
let child1 = TreeNode {
|
||||||
|
entries: group1,
|
||||||
|
is_leaf: self.root.is_leaf,
|
||||||
|
};
|
||||||
|
let child2 = TreeNode {
|
||||||
|
entries: group2,
|
||||||
|
is_leaf: self.root.is_leaf,
|
||||||
|
};
|
||||||
|
let mbr1 = common_compute_group_mbr(&child1.entries)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
let mbr2 = common_compute_group_mbr(&child2.entries)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
self.root.is_leaf = false;
|
||||||
|
self.root.entries.clear();
|
||||||
|
self.root.entries.push(Entry::Node {
|
||||||
|
mbr: mbr1,
|
||||||
|
child: Box::new(child1),
|
||||||
|
});
|
||||||
|
self.root.entries.push(Entry::Node {
|
||||||
|
mbr: mbr2,
|
||||||
|
child: Box::new(child2),
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
if reinsert_level.is_none() {
|
||||||
|
reinsert_level = Some(overflow_level);
|
||||||
|
}
|
||||||
|
let mut node = TreeNode {
|
||||||
|
entries: overflowed_node,
|
||||||
|
is_leaf: self.root.is_leaf,
|
||||||
|
};
|
||||||
|
let reinserted_entries = forced_reinsert(&mut node, self.max_entries);
|
||||||
|
self.root.entries = node.entries;
|
||||||
|
for entry in reinserted_entries {
|
||||||
|
to_insert.push((entry, 0));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Performs a range search with a given query bounding volume.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `query` - The bounding volume to search against.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// A vector of references to the objects whose minimum bounding volumes intersect the query.
|
||||||
|
pub fn range_search_bbox(&self, query: &T::B) -> Vec<&T> {
|
||||||
|
info!("Performing range search with query: {:?}", query);
|
||||||
|
let mut result = Vec::new();
|
||||||
|
common_search_node(&self.root, query, &mut result);
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Inserts a bulk of objects into the R*-tree.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `objects` - The objects to insert.
|
||||||
|
pub fn insert_bulk(&mut self, objects: Vec<T>)
|
||||||
|
where
|
||||||
|
T: Clone,
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
if objects.is_empty() {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut entries: Vec<Entry<T>> = objects
|
||||||
|
.into_iter()
|
||||||
|
.map(|obj| Entry::Leaf {
|
||||||
|
mbr: obj.mbr(),
|
||||||
|
object: obj,
|
||||||
|
})
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
while entries.len() > self.max_entries {
|
||||||
|
let mut new_level_entries = Vec::new();
|
||||||
|
let chunks = entries.chunks(self.max_entries);
|
||||||
|
|
||||||
|
for chunk in chunks {
|
||||||
|
let child_node = TreeNode {
|
||||||
|
entries: chunk.to_vec(),
|
||||||
|
is_leaf: self.root.is_leaf,
|
||||||
|
};
|
||||||
|
if let Some(mbr) = common_compute_group_mbr(&child_node.entries) {
|
||||||
|
new_level_entries.push(Entry::Node {
|
||||||
|
mbr,
|
||||||
|
child: Box::new(child_node),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
entries = new_level_entries;
|
||||||
|
self.root.is_leaf = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
self.root.entries.extend(entries);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[doc(hidden)]
|
||||||
|
pub fn height(&self) -> usize {
|
||||||
|
let mut height = 1;
|
||||||
|
let mut current_node = &self.root;
|
||||||
|
while !current_node.is_leaf {
|
||||||
|
height += 1;
|
||||||
|
current_node = if let Some(Entry::Node { child, .. }) = current_node.entries.first() {
|
||||||
|
child
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
height
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn choose_subtree<T: RStarTreeObject>(node: &TreeNode<T>, entry: &Entry<T>) -> usize {
|
||||||
|
let children_are_leaves = if let Some(Entry::Node { child, .. }) = node.entries.first() {
|
||||||
|
child.is_leaf
|
||||||
|
} else {
|
||||||
|
false
|
||||||
|
};
|
||||||
|
|
||||||
|
if children_are_leaves {
|
||||||
|
node.entries
|
||||||
|
.iter()
|
||||||
|
.enumerate()
|
||||||
|
.min_by(|&(_, a), &(_, b)| {
|
||||||
|
let mbr_a = a.mbr();
|
||||||
|
let mbr_b = b.mbr();
|
||||||
|
|
||||||
|
let overlap_a = node
|
||||||
|
.entries
|
||||||
|
.iter()
|
||||||
|
.filter(|e| !std::ptr::eq(*e, a))
|
||||||
|
.map(|e| e.mbr().union(entry.mbr()).overlap(e.mbr()))
|
||||||
|
.sum::<f64>();
|
||||||
|
|
||||||
|
let overlap_b = node
|
||||||
|
.entries
|
||||||
|
.iter()
|
||||||
|
.filter(|e| !std::ptr::eq(*e, b))
|
||||||
|
.map(|e| e.mbr().union(entry.mbr()).overlap(e.mbr()))
|
||||||
|
.sum::<f64>();
|
||||||
|
|
||||||
|
let overlap_cmp = overlap_a.partial_cmp(&overlap_b).unwrap_or(Ordering::Equal);
|
||||||
|
if overlap_cmp != Ordering::Equal {
|
||||||
|
return overlap_cmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
let enlargement_a = mbr_a.enlargement(entry.mbr());
|
||||||
|
let enlargement_b = mbr_b.enlargement(entry.mbr());
|
||||||
|
let enlargement_cmp = enlargement_a
|
||||||
|
.partial_cmp(&enlargement_b)
|
||||||
|
.unwrap_or(Ordering::Equal);
|
||||||
|
if enlargement_cmp != Ordering::Equal {
|
||||||
|
return enlargement_cmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
mbr_a
|
||||||
|
.area()
|
||||||
|
.partial_cmp(&mbr_b.area())
|
||||||
|
.unwrap_or(Ordering::Equal)
|
||||||
|
})
|
||||||
|
.map(|(i, _)| i)
|
||||||
|
.unwrap_or(0)
|
||||||
|
} else {
|
||||||
|
node.entries
|
||||||
|
.iter()
|
||||||
|
.enumerate()
|
||||||
|
.min_by(|(_, a), (_, b)| {
|
||||||
|
let mbr_a = a.mbr();
|
||||||
|
let mbr_b = b.mbr();
|
||||||
|
|
||||||
|
let enlargement_a = mbr_a.enlargement(entry.mbr());
|
||||||
|
let enlargement_b = mbr_b.enlargement(entry.mbr());
|
||||||
|
|
||||||
|
let enlargement_cmp = enlargement_a
|
||||||
|
.partial_cmp(&enlargement_b)
|
||||||
|
.unwrap_or(Ordering::Equal);
|
||||||
|
if enlargement_cmp != Ordering::Equal {
|
||||||
|
return enlargement_cmp;
|
||||||
|
}
|
||||||
|
mbr_a
|
||||||
|
.area()
|
||||||
|
.partial_cmp(&mbr_b.area())
|
||||||
|
.unwrap_or(Ordering::Equal)
|
||||||
|
})
|
||||||
|
.map(|(i, _)| i)
|
||||||
|
.unwrap_or(0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn insert_recursive<T: RStarTreeObject + Clone>(
|
||||||
|
node: &mut TreeNode<T>,
|
||||||
|
entry: Entry<T>,
|
||||||
|
max_entries: usize,
|
||||||
|
level: usize,
|
||||||
|
reinsert_level: &mut Option<usize>,
|
||||||
|
to_insert_queue: &mut Vec<(Entry<T>, usize)>,
|
||||||
|
) -> Option<(Vec<Entry<T>>, usize)>
|
||||||
|
where
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
if node.is_leaf {
|
||||||
|
node.entries.push(entry);
|
||||||
|
} else {
|
||||||
|
let best_index = choose_subtree(node, &entry);
|
||||||
|
let child = if let Entry::Node { child, .. } = &mut node.entries[best_index] {
|
||||||
|
child
|
||||||
|
} else {
|
||||||
|
unreachable!()
|
||||||
|
};
|
||||||
|
|
||||||
|
if let Some((overflow, overflow_level)) = insert_recursive(
|
||||||
|
child,
|
||||||
|
entry,
|
||||||
|
max_entries,
|
||||||
|
level + 1,
|
||||||
|
reinsert_level,
|
||||||
|
to_insert_queue,
|
||||||
|
) {
|
||||||
|
if reinsert_level.is_some() && *reinsert_level == Some(overflow_level) {
|
||||||
|
let (g1, g2) = split_entries(overflow, max_entries);
|
||||||
|
let child1 = TreeNode {
|
||||||
|
entries: g1,
|
||||||
|
is_leaf: child.is_leaf,
|
||||||
|
};
|
||||||
|
let child2 = TreeNode {
|
||||||
|
entries: g2,
|
||||||
|
is_leaf: child.is_leaf,
|
||||||
|
};
|
||||||
|
let mbr1 = common_compute_group_mbr(&child1.entries)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
let mbr2 = common_compute_group_mbr(&child2.entries)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
node.entries[best_index] = Entry::Node {
|
||||||
|
mbr: mbr1,
|
||||||
|
child: Box::new(child1),
|
||||||
|
};
|
||||||
|
node.entries.push(Entry::Node {
|
||||||
|
mbr: mbr2,
|
||||||
|
child: Box::new(child2),
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
if reinsert_level.is_none() {
|
||||||
|
*reinsert_level = Some(overflow_level);
|
||||||
|
}
|
||||||
|
let mut overflowed_node = TreeNode {
|
||||||
|
entries: overflow,
|
||||||
|
is_leaf: child.is_leaf,
|
||||||
|
};
|
||||||
|
let reinserted = forced_reinsert(&mut overflowed_node, max_entries);
|
||||||
|
for item in reinserted {
|
||||||
|
to_insert_queue.push((item, 0));
|
||||||
|
}
|
||||||
|
if let Entry::Node { child, .. } = &mut node.entries[best_index] {
|
||||||
|
child.entries = overflowed_node.entries;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if let Some(new_mbr) = common_compute_group_mbr(
|
||||||
|
if let Entry::Node { child, .. } = &node.entries[best_index] {
|
||||||
|
&child.entries
|
||||||
|
} else {
|
||||||
|
unreachable!()
|
||||||
|
},
|
||||||
|
) {
|
||||||
|
if let Entry::Node { mbr, .. } = &mut node.entries[best_index] {
|
||||||
|
*mbr = new_mbr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if node.entries.len() > max_entries {
|
||||||
|
return Some((std::mem::take(&mut node.entries), level));
|
||||||
|
}
|
||||||
|
None
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forced_reinsert<T: RStarTreeObject + Clone>(
|
||||||
|
node: &mut TreeNode<T>,
|
||||||
|
max_entries: usize,
|
||||||
|
) -> Vec<Entry<T>>
|
||||||
|
where
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
let node_mbr = if let Some(mbr) = common_compute_group_mbr(&node.entries) {
|
||||||
|
mbr
|
||||||
|
} else {
|
||||||
|
return Vec::new();
|
||||||
|
};
|
||||||
|
let reinsert_count = (max_entries as f64 * 0.3).ceil() as usize;
|
||||||
|
|
||||||
|
node.entries.sort_by(|a, b| {
|
||||||
|
let center_a: Vec<f64> = (0..T::B::DIM)
|
||||||
|
.map(|d| {
|
||||||
|
a.mbr()
|
||||||
|
.center(d)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"))
|
||||||
|
})
|
||||||
|
.collect();
|
||||||
|
let center_b: Vec<f64> = (0..T::B::DIM)
|
||||||
|
.map(|d| {
|
||||||
|
b.mbr()
|
||||||
|
.center(d)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"))
|
||||||
|
})
|
||||||
|
.collect();
|
||||||
|
let node_center: Vec<f64> = (0..T::B::DIM)
|
||||||
|
.map(|d| {
|
||||||
|
node_mbr
|
||||||
|
.center(d)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"))
|
||||||
|
})
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
let dist_a = center_a
|
||||||
|
.iter()
|
||||||
|
.zip(node_center.iter())
|
||||||
|
.map(|(ca, cb)| (ca - cb).powi(2))
|
||||||
|
.sum::<f64>();
|
||||||
|
let dist_b = center_b
|
||||||
|
.iter()
|
||||||
|
.zip(node_center.iter())
|
||||||
|
.map(|(ca, cb)| (ca - cb).powi(2))
|
||||||
|
.sum::<f64>();
|
||||||
|
|
||||||
|
dist_b.partial_cmp(&dist_a).unwrap_or(Ordering::Equal)
|
||||||
|
});
|
||||||
|
|
||||||
|
node.entries.drain(0..reinsert_count).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn split_entries<T: RStarTreeObject + Clone>(
|
||||||
|
mut entries: Vec<Entry<T>>,
|
||||||
|
max_entries: usize,
|
||||||
|
) -> (Vec<Entry<T>>, Vec<Entry<T>>)
|
||||||
|
where
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
let min_entries = (max_entries as f64 * 0.4).ceil() as usize;
|
||||||
|
let mut best_axis = 0;
|
||||||
|
let mut best_split_index = 0;
|
||||||
|
let mut min_margin = f64::INFINITY;
|
||||||
|
|
||||||
|
for dim in 0..T::B::DIM {
|
||||||
|
entries.sort_by(|a, b| {
|
||||||
|
let ca = a
|
||||||
|
.mbr()
|
||||||
|
.center(dim)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"));
|
||||||
|
let cb = b
|
||||||
|
.mbr()
|
||||||
|
.center(dim)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"));
|
||||||
|
ca.partial_cmp(&cb).unwrap_or(Ordering::Equal)
|
||||||
|
});
|
||||||
|
|
||||||
|
for k in min_entries..=entries.len() - min_entries {
|
||||||
|
let group1 = &entries[..k];
|
||||||
|
let group2 = &entries[k..];
|
||||||
|
let mbr1 = common_compute_group_mbr(group1)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
let mbr2 = common_compute_group_mbr(group2)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
let margin = mbr1.margin() + mbr2.margin();
|
||||||
|
if margin < min_margin {
|
||||||
|
min_margin = margin;
|
||||||
|
best_axis = dim;
|
||||||
|
best_split_index = k;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
entries.sort_by(|a, b| {
|
||||||
|
let ca = a
|
||||||
|
.mbr()
|
||||||
|
.center(best_axis)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"));
|
||||||
|
let cb = b
|
||||||
|
.mbr()
|
||||||
|
.center(best_axis)
|
||||||
|
.unwrap_or_else(|_| unreachable!("dim valid"));
|
||||||
|
ca.partial_cmp(&cb).unwrap_or(Ordering::Equal)
|
||||||
|
});
|
||||||
|
|
||||||
|
let mut best_overlap = f64::INFINITY;
|
||||||
|
let mut best_area = f64::INFINITY;
|
||||||
|
|
||||||
|
for k in min_entries..=entries.len() - min_entries {
|
||||||
|
let group1 = &entries[..k];
|
||||||
|
let group2 = &entries[k..];
|
||||||
|
let mbr1 = common_compute_group_mbr(group1)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
let mbr2 = common_compute_group_mbr(group2)
|
||||||
|
.unwrap_or_else(|| unreachable!("non-empty group must have MBR"));
|
||||||
|
let overlap = mbr1.overlap(&mbr2);
|
||||||
|
let area = mbr1.area() + mbr2.area();
|
||||||
|
|
||||||
|
if overlap < best_overlap {
|
||||||
|
best_overlap = overlap;
|
||||||
|
best_area = area;
|
||||||
|
best_split_index = k;
|
||||||
|
} else if (overlap - best_overlap).abs() < EPSILON && area < best_area {
|
||||||
|
best_area = area;
|
||||||
|
best_split_index = k;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let (group1, group2) = entries.split_at(best_split_index);
|
||||||
|
(group1.to_vec(), group2.to_vec())
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: RStarTreeObject> RStarTree<T>
|
||||||
|
where
|
||||||
|
T: PartialEq + Clone,
|
||||||
|
T::B: BSPBounds,
|
||||||
|
{
|
||||||
|
/// Deletes an object from the R*‑tree.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `object` - The object to delete.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// `true` if at least one matching object was found and removed.
|
||||||
|
pub fn delete(&mut self, object: &T) -> bool {
|
||||||
|
info!("Attempting to delete object: {:?}", object);
|
||||||
|
let object_mbr = object.mbr();
|
||||||
|
let mut reinsert_list = Vec::new();
|
||||||
|
let deleted = common_delete_entry(
|
||||||
|
&mut self.root,
|
||||||
|
object,
|
||||||
|
&object_mbr,
|
||||||
|
self.min_entries,
|
||||||
|
&mut reinsert_list,
|
||||||
|
);
|
||||||
|
|
||||||
|
if deleted {
|
||||||
|
for entry in reinsert_list {
|
||||||
|
self.insert_entry(entry, None);
|
||||||
|
}
|
||||||
|
|
||||||
|
if !self.root.is_leaf && self.root.entries.len() == 1 {
|
||||||
|
if let Some(Entry::Node { child, .. }) = self.root.entries.pop() {
|
||||||
|
self.root = *child;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
deleted
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: std::fmt::Debug + Clone> RStarTreeObject for Point2D<T> {
|
||||||
|
type B = Rectangle;
|
||||||
|
fn mbr(&self) -> Self::B {
|
||||||
|
Rectangle {
|
||||||
|
x: self.x,
|
||||||
|
y: self.y,
|
||||||
|
width: EPSILON,
|
||||||
|
height: EPSILON,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: std::fmt::Debug + Clone> RStarTreeObject for Point3D<T> {
|
||||||
|
type B = Cube;
|
||||||
|
fn mbr(&self) -> Self::B {
|
||||||
|
Cube {
|
||||||
|
x: self.x,
|
||||||
|
y: self.y,
|
||||||
|
z: self.z,
|
||||||
|
width: EPSILON,
|
||||||
|
height: EPSILON,
|
||||||
|
depth: EPSILON,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: std::fmt::Debug + Clone> RStarTree<Point2D<T>> {
|
||||||
|
/// Performs a k‑nearest neighbor search on an R*‑tree of 2D points.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `query` - The 2D point to search near.
|
||||||
|
/// * `k` - The number of nearest neighbors to return.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// A vector of references to the k nearest 2D points.
|
||||||
|
///
|
||||||
|
/// # Note
|
||||||
|
///
|
||||||
|
/// The pruning logic for the search is based on Euclidean distance. Custom distance metrics
|
||||||
|
/// that are not compatible with Euclidean distance may lead to incorrect results or reduced
|
||||||
|
/// performance.
|
||||||
|
pub fn knn_search<M: DistanceMetric<Point2D<T>>>(
|
||||||
|
&self,
|
||||||
|
query: &Point2D<T>,
|
||||||
|
k: usize,
|
||||||
|
) -> Vec<&Point2D<T>> {
|
||||||
|
if k == 0 {
|
||||||
|
return Vec::new();
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut heap: BinaryHeap<KnnCandidate<Entry<Point2D<T>>>> = BinaryHeap::new();
|
||||||
|
for entry in &self.root.entries {
|
||||||
|
let dist_sq = entry.mbr().min_distance(query).powi(2);
|
||||||
|
heap.push(KnnCandidate {
|
||||||
|
dist: dist_sq,
|
||||||
|
entry,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
type OrdDist = OrderedFloat<f64>;
|
||||||
|
#[inline]
|
||||||
|
#[allow(non_snake_case)]
|
||||||
|
fn OrdDist(x: f64) -> OrderedFloat<f64> {
|
||||||
|
OrderedFloat(x)
|
||||||
|
}
|
||||||
|
|
||||||
|
struct HeapItem<'a, P> {
|
||||||
|
key: OrdDist,
|
||||||
|
idx: usize,
|
||||||
|
obj: &'a P,
|
||||||
|
}
|
||||||
|
impl<P> PartialEq for HeapItem<'_, P> {
|
||||||
|
fn eq(&self, other: &Self) -> bool {
|
||||||
|
self.key == other.key && self.idx == other.idx
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<P> Eq for HeapItem<'_, P> {}
|
||||||
|
impl<P> Ord for HeapItem<'_, P> {
|
||||||
|
fn cmp(&self, other: &Self) -> Ordering {
|
||||||
|
match self.key.cmp(&other.key) {
|
||||||
|
Ordering::Equal => self.idx.cmp(&other.idx),
|
||||||
|
ord => ord,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<P> PartialOrd for HeapItem<'_, P> {
|
||||||
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||||
|
Some(self.cmp(other))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut results: BinaryHeap<HeapItem<Point2D<T>>> = BinaryHeap::new();
|
||||||
|
let mut counter: usize = 0;
|
||||||
|
|
||||||
|
while let Some(KnnCandidate { dist, entry }) = heap.pop() {
|
||||||
|
if results.len() >= k {
|
||||||
|
if let Some(worst_result) = results.peek() {
|
||||||
|
if dist > worst_result.key.0 {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
match entry {
|
||||||
|
Entry::Leaf { object, .. } => {
|
||||||
|
let d_sq = M::distance_sq(query, object);
|
||||||
|
if results.len() < k {
|
||||||
|
counter += 1;
|
||||||
|
results.push(HeapItem {
|
||||||
|
key: OrdDist(d_sq),
|
||||||
|
idx: counter,
|
||||||
|
obj: object,
|
||||||
|
});
|
||||||
|
} else if let Some(peek) = results.peek() {
|
||||||
|
if d_sq < peek.key.0 {
|
||||||
|
results.pop();
|
||||||
|
counter += 1;
|
||||||
|
results.push(HeapItem {
|
||||||
|
key: OrdDist(d_sq),
|
||||||
|
idx: counter,
|
||||||
|
obj: object,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Entry::Node { child, .. } => {
|
||||||
|
for child_entry in &child.entries {
|
||||||
|
let d_sq = child_entry.mbr().min_distance(query).powi(2);
|
||||||
|
if results.len() < k {
|
||||||
|
heap.push(KnnCandidate {
|
||||||
|
dist: d_sq,
|
||||||
|
entry: child_entry,
|
||||||
|
});
|
||||||
|
} else if let Some(peek) = results.peek() {
|
||||||
|
if d_sq < peek.key.0 {
|
||||||
|
heap.push(KnnCandidate {
|
||||||
|
dist: d_sq,
|
||||||
|
entry: child_entry,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut sorted_results = results.into_vec();
|
||||||
|
sorted_results.sort_by(|a, b| a.key.partial_cmp(&b.key).unwrap_or(Ordering::Equal));
|
||||||
|
sorted_results.into_iter().map(|r| r.obj).collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: std::fmt::Debug + Clone> RStarTree<Point3D<T>> {
|
||||||
|
/// Performs a k‑nearest neighbor search on an R*‑tree of 3D points.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `query` - The 3D point to search near.
|
||||||
|
/// * `k` - The number of nearest neighbors to return.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// A vector of references to the k nearest 3D points.
|
||||||
|
///
|
||||||
|
/// # Note
|
||||||
|
///
|
||||||
|
/// The pruning logic for the search is based on Euclidean distance. Custom distance metrics
|
||||||
|
/// that are not compatible with Euclidean distance may lead to incorrect results or reduced
|
||||||
|
/// performance.
|
||||||
|
pub fn knn_search<M: DistanceMetric<Point3D<T>>>(
|
||||||
|
&self,
|
||||||
|
query: &Point3D<T>,
|
||||||
|
k: usize,
|
||||||
|
) -> Vec<&Point3D<T>> {
|
||||||
|
if k == 0 {
|
||||||
|
return Vec::new();
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut heap: BinaryHeap<KnnCandidate<Entry<Point3D<T>>>> = BinaryHeap::new();
|
||||||
|
for entry in &self.root.entries {
|
||||||
|
let dist_sq = entry.mbr().min_distance(query).powi(2);
|
||||||
|
heap.push(KnnCandidate {
|
||||||
|
dist: dist_sq,
|
||||||
|
entry,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
type OrdDist = OrderedFloat<f64>;
|
||||||
|
#[inline]
|
||||||
|
#[allow(non_snake_case)]
|
||||||
|
fn OrdDist(x: f64) -> OrderedFloat<f64> {
|
||||||
|
OrderedFloat(x)
|
||||||
|
}
|
||||||
|
|
||||||
|
struct HeapItem<'a, P> {
|
||||||
|
key: OrdDist,
|
||||||
|
idx: usize,
|
||||||
|
obj: &'a P,
|
||||||
|
}
|
||||||
|
impl<P> PartialEq for HeapItem<'_, P> {
|
||||||
|
fn eq(&self, other: &Self) -> bool {
|
||||||
|
self.key == other.key && self.idx == other.idx
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<P> Eq for HeapItem<'_, P> {}
|
||||||
|
impl<P> Ord for HeapItem<'_, P> {
|
||||||
|
fn cmp(&self, other: &Self) -> Ordering {
|
||||||
|
match self.key.cmp(&other.key) {
|
||||||
|
Ordering::Equal => self.idx.cmp(&other.idx),
|
||||||
|
ord => ord,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<P> PartialOrd for HeapItem<'_, P> {
|
||||||
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||||
|
Some(self.cmp(other))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut results: BinaryHeap<HeapItem<Point3D<T>>> = BinaryHeap::new();
|
||||||
|
let mut counter: usize = 0;
|
||||||
|
|
||||||
|
while let Some(KnnCandidate { dist, entry }) = heap.pop() {
|
||||||
|
if results.len() >= k {
|
||||||
|
if let Some(worst_result) = results.peek() {
|
||||||
|
if dist > worst_result.key.0 {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
match entry {
|
||||||
|
Entry::Leaf { object, .. } => {
|
||||||
|
let d_sq = M::distance_sq(query, object);
|
||||||
|
if results.len() < k {
|
||||||
|
counter += 1;
|
||||||
|
results.push(HeapItem {
|
||||||
|
key: OrdDist(d_sq),
|
||||||
|
idx: counter,
|
||||||
|
obj: object,
|
||||||
|
});
|
||||||
|
} else if let Some(peek) = results.peek() {
|
||||||
|
if d_sq < peek.key.0 {
|
||||||
|
results.pop();
|
||||||
|
counter += 1;
|
||||||
|
results.push(HeapItem {
|
||||||
|
key: OrdDist(d_sq),
|
||||||
|
idx: counter,
|
||||||
|
obj: object,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Entry::Node { child, .. } => {
|
||||||
|
for child_entry in &child.entries {
|
||||||
|
let d_sq = child_entry.mbr().min_distance(query).powi(2);
|
||||||
|
if results.len() < k {
|
||||||
|
heap.push(KnnCandidate {
|
||||||
|
dist: d_sq,
|
||||||
|
entry: child_entry,
|
||||||
|
});
|
||||||
|
} else if let Some(peek) = results.peek() {
|
||||||
|
if d_sq < peek.key.0 {
|
||||||
|
heap.push(KnnCandidate {
|
||||||
|
dist: d_sq,
|
||||||
|
entry: child_entry,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut sorted_results = results.into_vec();
|
||||||
|
sorted_results.sort_by(|a, b| a.key.partial_cmp(&b.key).unwrap_or(Ordering::Equal));
|
||||||
|
sorted_results.into_iter().map(|r| r.obj).collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> RStarTree<T>
|
||||||
|
where
|
||||||
|
T: RStarTreeObject + PartialEq + std::fmt::Debug,
|
||||||
|
T::B: BoundingVolumeFromPoint<T> + HasMinDistance<T> + Clone,
|
||||||
|
{
|
||||||
|
/// Performs a range search on the R*‑tree using a query object and radius.
|
||||||
|
///
|
||||||
|
/// The query object is wrapped into a bounding volume using `from_point_radius`.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `query` - The query object.
|
||||||
|
/// * `radius` - The search radius.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// A vector of references to the objects within the given radius.
|
||||||
|
///
|
||||||
|
/// # Note
|
||||||
|
///
|
||||||
|
/// The pruning logic for the search is based on Euclidean distance. Custom distance metrics
|
||||||
|
/// that are not compatible with Euclidean distance may lead to incorrect results or reduced
|
||||||
|
/// performance.
|
||||||
|
pub fn range_search<M: DistanceMetric<T>>(&self, query: &T, radius: f64) -> Vec<&T> {
|
||||||
|
let query_volume = T::B::from_point_radius(query, radius);
|
||||||
|
let candidates = self.range_search_bbox(&query_volume);
|
||||||
|
candidates
|
||||||
|
.into_iter()
|
||||||
|
.filter(|object| M::distance_sq(query, object) <= radius * radius)
|
||||||
|
.collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
Loading…
Reference in a new issue